



# **Bayesian Networks in Educational Assessment**

# **Session III: Refining Bayes Net with Data** Estimating Parameters with MCMC

Duanli Yan, ETS, Roy Levy, ASU

### Bayesian Inference: Expanding Our Context

## **Posterior Distribution**

Posterior distribution for *unknowns* given *knowns* is

 $p(unknowns | knowns) \propto p(knowns | unknowns) p(unknowns)$ 

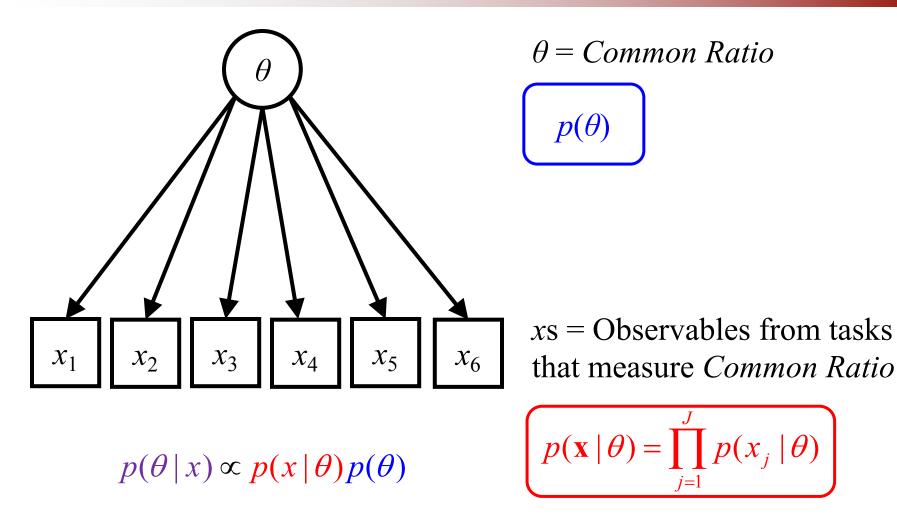
Inference about examinee latent variables ( $\theta$ ) given observables (x)

 $p(\theta | \mathbf{x}) \propto p(\mathbf{x} | \theta) p(\theta)$ 

Example: ACED Bayes Net Fragment for Common Ratio

- $\theta = Common Ratio$
- **x** = Observables from tasks that measure *Common Ratio*

### **Bayes Net Fragment**



### Probability Distribution for the Latent Variable



 $\theta = Common Ratio$ 

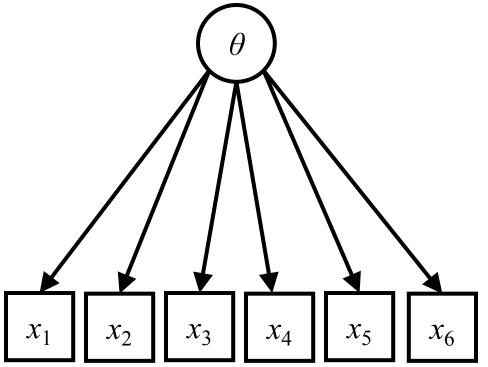
 $\theta \sim \text{Categorical}(\lambda)$ 

#### ACED Example

- 2 Levels of  $\theta$  (Low, High)
- $\lambda = (\lambda_1, \lambda_2)$  contains probabilities for Low and High

|       | $\theta$ (Common Ratio) |             |
|-------|-------------------------|-------------|
|       | 1                       | 2           |
| Prob. | $\lambda_1$             | $\lambda_2$ |

### Probability Distribution for the Observables



*x*s = Observables from tasks that measure *Common Ratio* 

 $(x_j \mid \theta = c) \sim \text{Bernoulli}(\pi_{cj})$ 

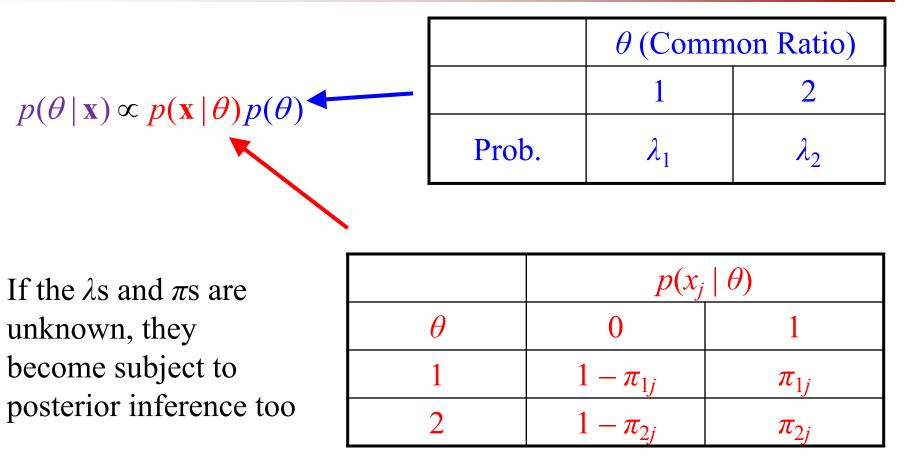
#### ACED Example

 $\pi_{cj}$  is the probability of correct response on task *j* given  $\theta = c$ 

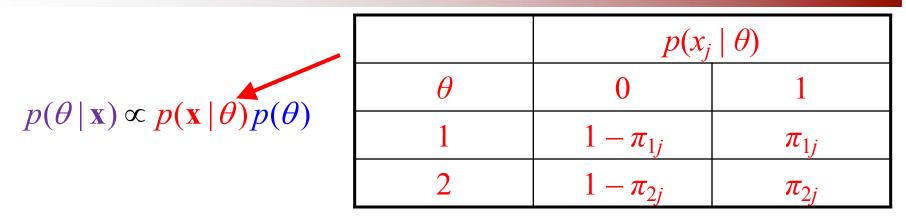
|          | $p(x_j \mid \theta)$ |            |
|----------|----------------------|------------|
| $\theta$ | 0                    | 1          |
| 1        | $1 - \pi_{1j}$       | $\pi_{1j}$ |
| 2        | $1 - \pi_{2j}$       | $\pi_{2j}$ |

MCMC 6

# **Bayesian Inference**



# **Bayesian Inference**



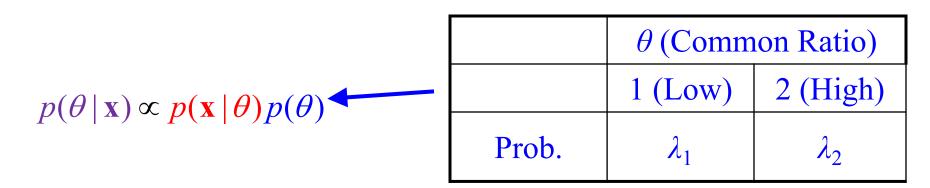
A convenient choice for prior distribution is the beta distribution

$$\pi_{cj} \sim \text{Beta}(\alpha_{\pi_c}, \beta_{\pi_c})$$

ACED Example:  $\pi_{1j} \sim \text{Beta}(1, 1)$   $\pi_{2j} \sim \text{Beta}(1, 1)$ 

For first task, constrain  $(\pi_{21} > \pi_{11})$  to resolve indeterminacy in the latent variable and avoid label switching





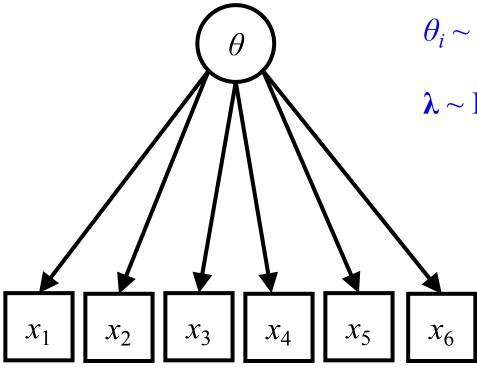
A convenient choice for the prior distribution is the Dirichlet distribution

$$\lambda \sim \text{Dirichlet}(\alpha_{\lambda}) \qquad \alpha_{\lambda} = (\alpha_{\lambda_1}, \alpha_{\lambda_2})$$

which generalizes the Beta distribution to the case of multiple categories

ACED Example:  $\lambda = (\lambda_1, \lambda_2) \sim \text{Dirichlet}(1, 1)$ 

## Model Summary



 $\theta_i \sim \text{Categorical}(\lambda)$ 

 $\lambda \sim \text{Dirichlet}(1, 1)$ 

 $(x_{ij} \mid \theta_i = c) \sim \text{Bernoulli}(\pi_{cj})$ 

 $\pi_{11} \sim \text{Beta}(1, 1)$  $\pi_{21} \sim \text{Beta}(1, 1) \ I(\pi_{21} > \pi_{11})$  $\pi_{ci} \sim \text{Beta}(1, 1) \text{ for others obs.}$ 

```
for (i in 1:n){
   for(j in 1:J){
      x[i,j] ~ dbern(pi[theta[i],j])
   }
}
```

$$(x_{ij} \mid \theta_i = c) \sim \text{Bernoulli}(\pi_{cj})$$

Referencing the table for  $\pi_j$ s in terms of  $\theta = 1$  or 2

|          | $p(x_j \mid \theta)$ |            |
|----------|----------------------|------------|
| $\theta$ | 0                    | 1          |
| 1        | $1 - \pi_{1j}$       | $\pi_{1j}$ |
| 2        | $1 - \pi_{2j}$       | $\pi_{2j}$ |

pi[1,1] ~ dbeta(1,1)  $\pi_{11} \sim \text{Beta}(1,1)$ 

 $pi[2,1] \sim dbeta(1,1) T(pi[1,1],) \qquad \pi_{21} \sim Beta(1,1) I(\pi_{21} > \pi_{11})$ 

```
for(c in 1:C){

for(j in 2:J){

pi[c,j] \sim dbeta(1,1)

}
```

```
for (i in 1:n){
                                                        \theta_i \sim \text{Categorical}(\lambda)
 theta[i] ~ dcat(lambda[])
}
lambda[1:C] ~ ddirch(alpha_lambda[])
                                                        \lambda \sim \text{Dirichlet}(1, 1)
for(c in 1:C){
 alpha lambda[c] <- 1
}
```

### Markov Chain Monte Carlo

# Estimation in Bayesian Modeling

- Our "answer" is a posterior distribution
  - All parameters treated as random, not fixed
- Contrasts with frequentist approaches to inference, estimation
  - Parameters are fixed, so estimation comes to finding the single best value
  - "Best" here in terms of a criterion (ML, LS, etc.)
- Peak of a mountain vs. mapping the entire terrain of peaks, valleys, and plateaus (of a landscape)

# What's In a Name?

#### Markov chain *Monte Carlo*

- Construct a sampling algorithm to *simulate* or *draw from* the posterior.
- Collect many such draws, which serve to empirically approximate the posterior distribution, and can be used to empirical approximate summary statistics.

Monte Carlo Principle:

Anything we want to know about a random variable  $\theta$  can be learned by sampling many times from  $f(\theta)$ , the density of  $\theta$ .

-- Jackman (2009)

# What's In a Name?

#### Markov *chain* Monte Carlo

- Values really generated as a sequence or chain
- *t* denotes the step in the chain
- $\theta^{(0)}, \theta^{(1)}, \theta^{(2)}, \dots, \theta^{(t)}, \dots, \theta^{(T)}$
- Also thought of as a time indicator

#### Markov chain Monte Carlo

• Follows the Markov property...

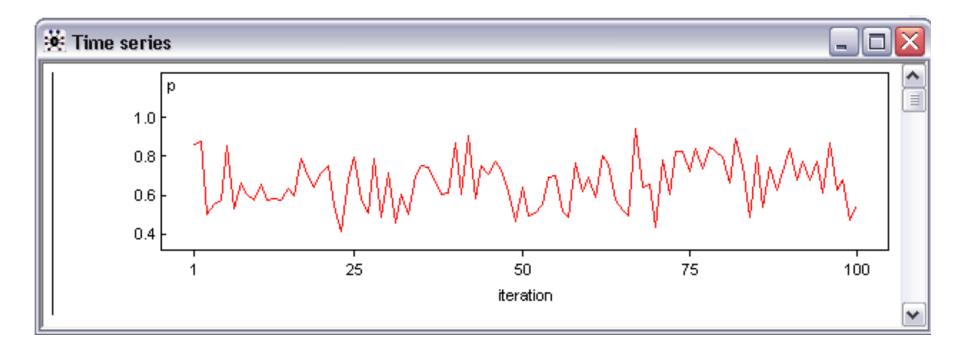
# The Markov Property

- Current state depends on previous position
  - Examples: weather, checkers, baseball counts & scoring
- Next state conditionally independent of past, given the present
   Akin to a full mediation model

• 
$$p(\theta^{(t+1)} \mid \theta^{(t)}, \theta^{(t-1)}, \theta^{(t-2)}, ...) = p(\theta^{(t+1)} \mid \theta^{(t)})$$



# Visualizing the Chain: Trace Plot



- Markov chains are *sequences of numbers* that have the Markov property
  - Draws in cycle *t*+1 depend on values from cycle *t*, but given those not on previous cycles (Markov property)
- Under certain assumptions Markov chains reach *stationarity*
- The collection of values converges to a distribution, referred to as a stationary distribution
  - Memoryless: It will "forget" where it starts
  - Start anywhere, will reach stationarity if regularity conditions hold
  - For Bayes, set it up so that this is the posterior distribution
- Upon convergence, samples from the chain approximate the stationary (posterior) distribution

### Assessing Convergence

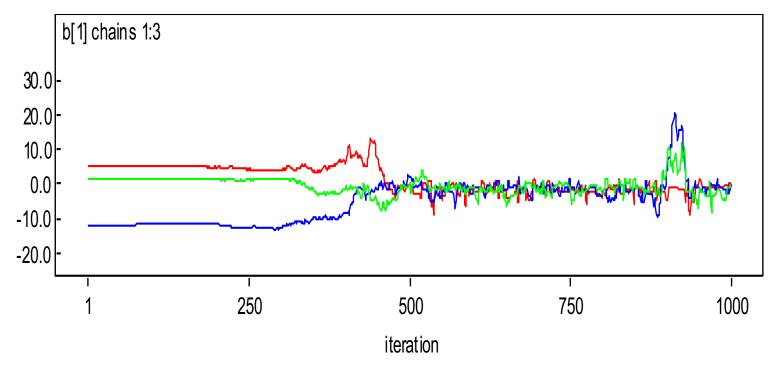
# **Diagnosing Convergence**

- With MCMC, convergence to a *distribution*, not a point
- ML:
  - Convergence is when we've reached the highest point in the likelihood,
  - The highest peak of the mountain
- MCMC:
  - Convergence when we're sampling values from the correct distribution,
  - We are mapping the entire terrain accurately

- A properly constructed Markov chain is guaranteed to converge to the stationary (posterior) distribution...eventually
- Upon convergence, it will sample over the full support of the stationary (posterior) distribution...over an ∞ number of draws
- In a finite chain, no guarantee that the chain has converged or is sampling through the full support of the stationary (posterior) distribution
- Many ways to diagnose convergence
- Whole software packages dedicated to just assessing convergence of chains (e.g., R packages 'coda' and 'boa')

# Gelman & Rubin's (1992) Potential Scale Reduction Factor (PSRF)

- Run *multiple* chains from dispersed starting points
- Suggest convergence when the chains come together
- If they all go to the same place, it's probably the stationary distribution

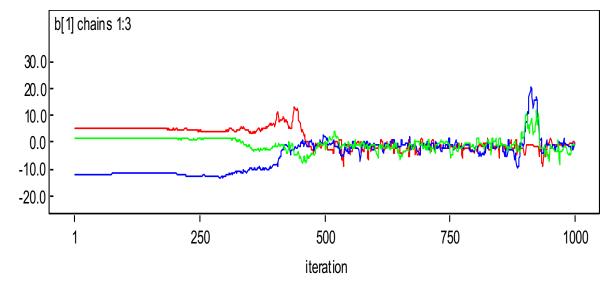


# Gelman & Rubin's (1992) Potential Scale Reduction Factor (PSRF)

- An analysis of variance type argument
- PSRF or R =

 $\frac{\text{Total Variance}}{\text{Within Chain Variance}} = \frac{\text{Between Chain Variance} + \text{Within Chain Variance}}{\text{Within Chain Variance}}$ 

• If there is substantial between-chain variance, will be >> 1



# Gelman & Rubin's (1992) Potential Scale Reduction Factor (PSRF)

- Run *multiple* chains from dispersed starting points
- Suggest convergence when the chains come together
- Operationalized in terms of partitioning variability
- Run multiple chains for 2*T* iterations, discard first half
- Examine between and within chain variability
- Various versions, modifications suggested over time

• For any  $\theta$ , for any chain c the within-chain variance is

$$W_{c} = \frac{1}{T-1} \sum_{t=1}^{T} (\theta_{(c)}^{(t)} - \overline{\theta}_{(c)})^{2}$$

• For all chains, the pooled within-chain variance is

$$W = \frac{1}{C} \sum_{c=1}^{C} W_c = \frac{1}{C(T-1)} \sum_{c=1}^{C} \sum_{t=1}^{T} (\theta_{(c)}^{(t)} - \overline{\theta}_{(c)})^2$$

• The between-chain variance is

$$B = \frac{T}{C-1} \sum_{c=1}^{C} (\overline{\theta}_{(c)} - \overline{\theta})^2$$

• The estimated variance is

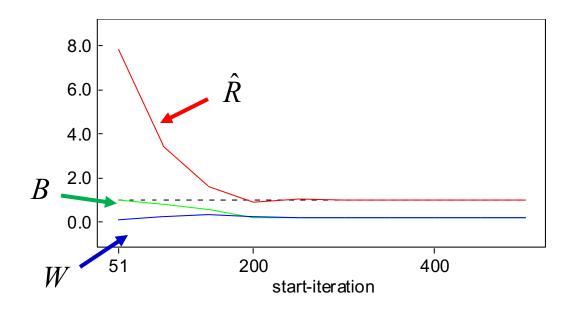
$$\hat{V}ar(\theta) = (T - 1/T)W + (1/T)B$$

• The potential scale reduction factor is

$$\hat{R} = \sqrt{\frac{\hat{V}ar(\theta)}{W}}$$

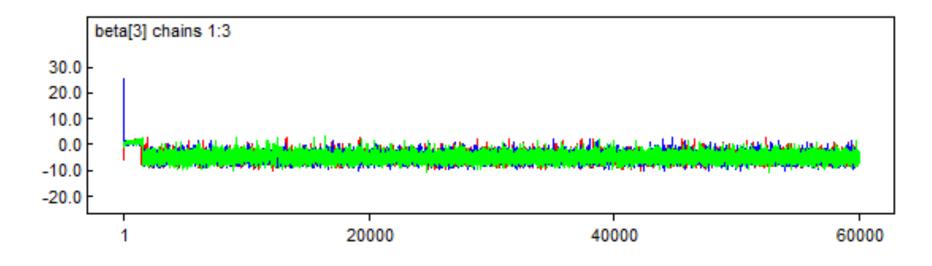
• If close to 1 (e.g., < 1.1) for all parameters, can conclude convergence

- Examine it over "time", look for  $\hat{R} \rightarrow 1$ , stability of *B* and *W*
- If close to 1 (e.g., < 1.2, or < 1.1) can conclude convergence



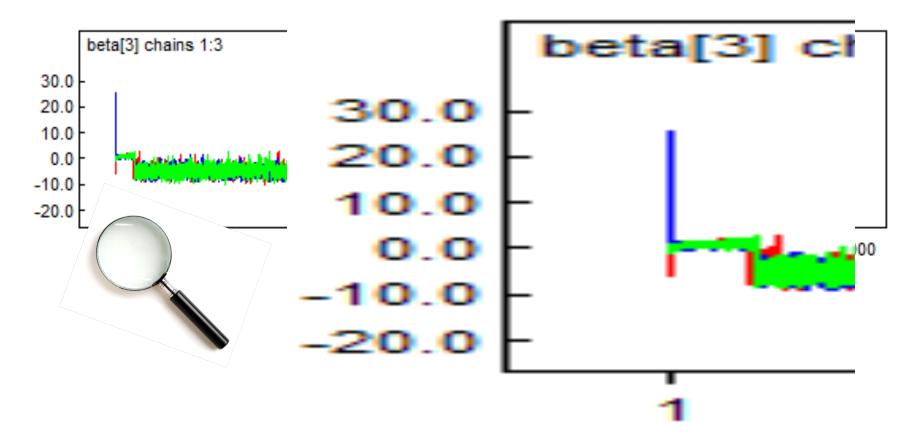
# Assessing Convergence: No Guarantees

Multiple chains coming together does not guarantee they have converged



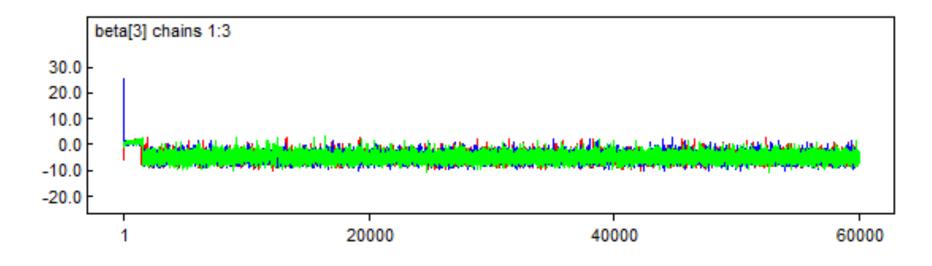
# Assessing Convergence: No Guarantees

multiple chains come together does not guarantee they have converged



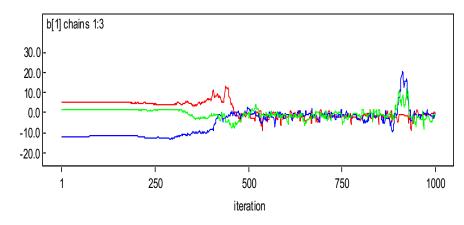
# Assessing Convergence: No Guarantees

Multiple chains coming together does not guarantee they have converged



# Assessing Convergence

- Recommend running multiple chains far apart and determine when they reach the same "place"
  - PSRF criterion an approximation to this
  - Akin to starting ML from different start values and seeing if they reach the same maximum
  - Here, convergence to a distribution, not a point
- A chain hasn't converged until *all* parameters converged
  - Brooks & Gelman multivariate PSRF



### Serial Dependence

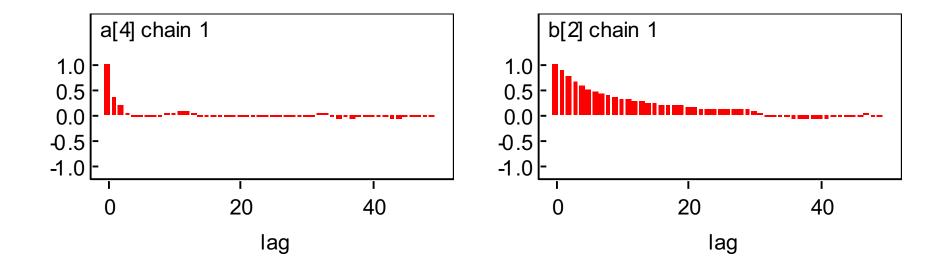
# Serial Dependence

- Serial dependence between draws due to the dependent nature of the draws (i.e., the Markov structure)
- $p(\theta^{(t+1)} \mid \theta^{(t)}, \theta^{(t-1)}, \theta^{(t-2)}, ...) = p(\theta^{(t+1)} \mid \theta^{(t)})$



- However there is a *marginal* dependence across multiple lags
- Can examine the autocorrelation across different lags

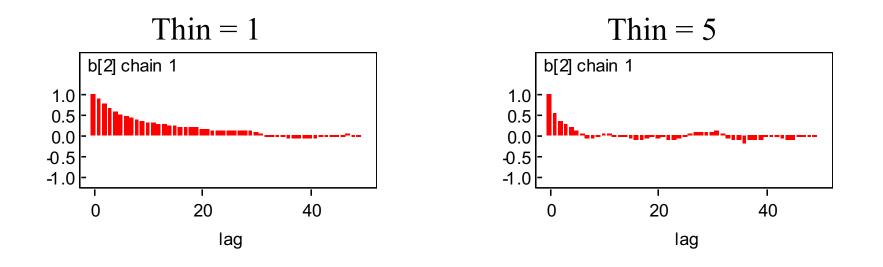
#### Autocorrelation

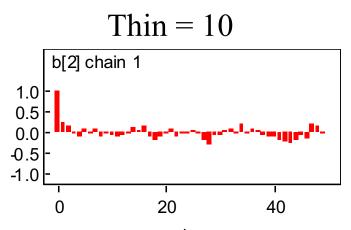


# Thinning

Can "thin" the chain by dropping certain iterations Thin = 1 → keep every iteration Thin = 2 → keep every other iteration (1, 3, 5,...) Thin = 5 → keep every 5<sup>th</sup> iteration (1, 6, 11,...) Thin = 10 → keep every 10<sup>th</sup> iteration (1, 11, 21,...) Thin = 100 → keep every 100<sup>th</sup> iteration (1, 101, 201,...)

#### Thinning





# Thinning

- Can "thin" the chain by dropping certain iterations Thin = 1 → keep every iteration Thin = 2 → keep every other iteration (1, 3, 5,...) Thin = 5 → keep every 5<sup>th</sup> iteration (1, 6, 11,...) Thin = 10 → keep every 10<sup>th</sup> iteration (1, 11, 21,...) Thin = 100 → keep every 100<sup>th</sup> iteration (1, 101, 201,...)
- Thinning *does not* provide a better portrait of the posterior
   A loss of information
- May want to keep, and account for time-series dependence
- Useful when data storage, other computations an issue

   I want 1000 iterations, rather have 1000 approximately
   independent iterations
- Dependence *within* chains, but none *between* chains

#### Mixing

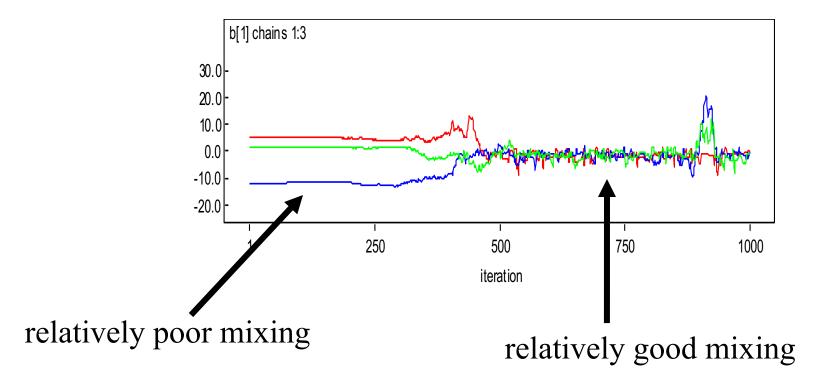
- We don't want the sampler to get "stuck" in some region of the posterior , or ignore a certain area of the posterior
- Mixing refers to the chain "moving" throughout the support of the distribution in a reasonable way

relatively good mixing

relatively poor mixing

- Mixing \neq convergence, but better mixing usually leads to faster convergence
- Mixing ≠ autocorrelation, but better mixing usually goes with lower autocorrelation (and cross-correlations between parameters)
- With better mixing, then for a given number of MCMC iterations, get more information about the posterior
  - Ideal scenario is independent draws from the posterior
- With worse mixing, need more iterations to (a) achieve convergence and (b) achieve a desired level of precision for the summary statistics of the posterior

- Chains may mix differently at different times
- Often indicative of an adaptive MCMC algorithm



- Slow mixing can also be caused by high dependence between parameters
  - Example: multicollinearity
- Reparameterizing the model can improve mixing
  - Example: centering predictors in regression

#### Stopping the Chain(s)

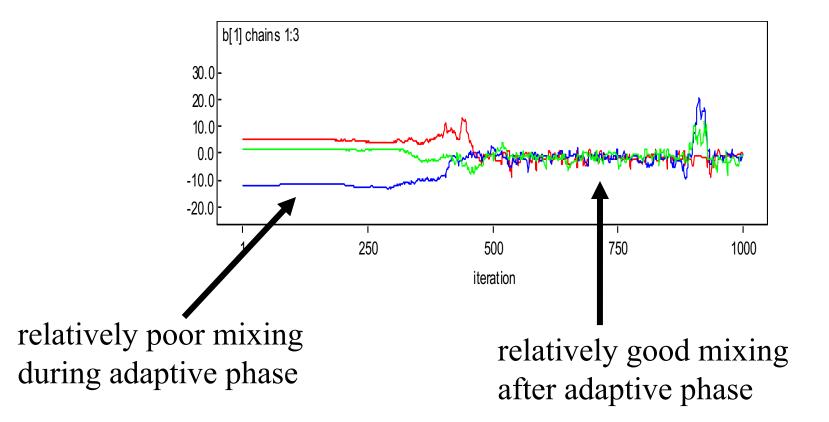
- Discard the iterations prior to convergence as *burn-in*
- How many more iterations to run?
  - As many as you want  $\textcircled{\odot}$
  - As many as time provides
- Autocorrelaion complicates things
- Software may provide the "MC error"
  - Estimate of the sampling variability of the sample mean
  - Sample here is the sample of iterations
  - Accounts for the dependence between iterations
  - Guideline is to go at least until MC error is less than 5% of the posterior standard deviation
- Effective sample size
  - Approximation of how many independent samples we have

#### Steps in MCMC in Practice

# Steps in MCMC (1)

- Setup MCMC using any of a number of algorithms
  - Program yourself (have fun ☺)
  - Use existing software (BUGS, JAGS)
- Diagnose convergence
  - Monitor trace plots, PSRF criteria
- Discard iterations prior to convergence as *burn-in* 
  - Software may indicate a minimum number of iterations needed
  - A lower bound

# Adapting MCMC $\rightarrow$ Automatic Discard

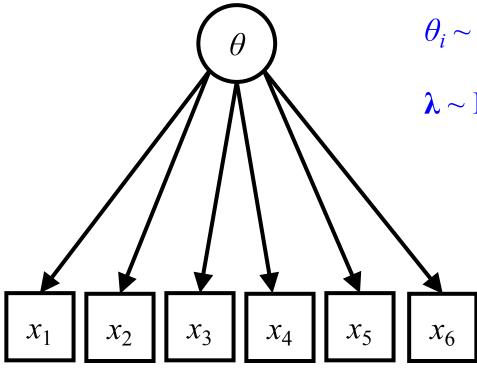


# Steps in MCMC (2)

- Run the chain for a desired number of iterations
  - Understanding serial dependence/autocorrelation
  - Understanding mixing
- Summarize results
  - Monte Carlo principle
  - Densities
  - Summary statistics

#### ACED Example

#### Model Summary



 $\theta_i \sim \text{Categorical}(\lambda)$ 

 $\lambda \sim \text{Dirichlet}(1, 1)$ 

 $(x_{ij} \mid \theta_i = c) \sim \text{Bernoulli}(\pi_{cj})$ 

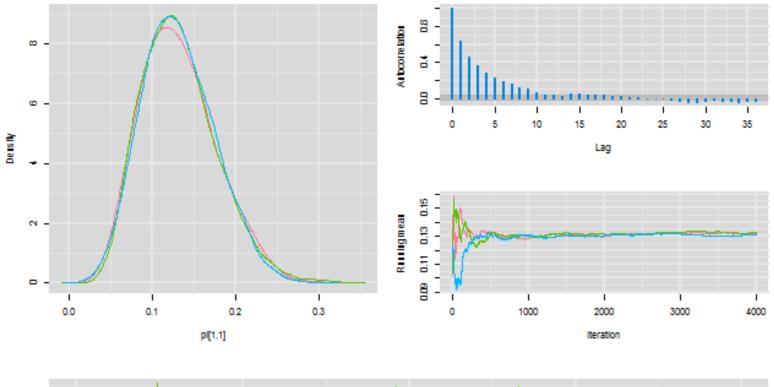
 $\pi_{11} \sim \text{Beta}(1, 1)$  $\pi_{21} \sim \text{Beta}(1, 1) \ I(\pi_{21} > \pi_{11})$  $\pi_{ci} \sim \text{Beta}(1, 1) \text{ for others obs.}$ 

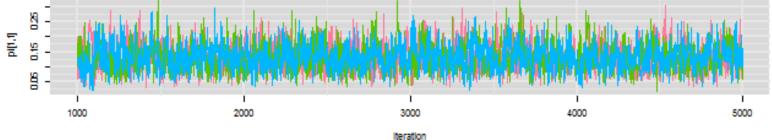
#### ACED Example

# See 'ACED Analysis.R' for Running the analysis in R See Following Slides for Select Results

#### Convergence Assessment (1)

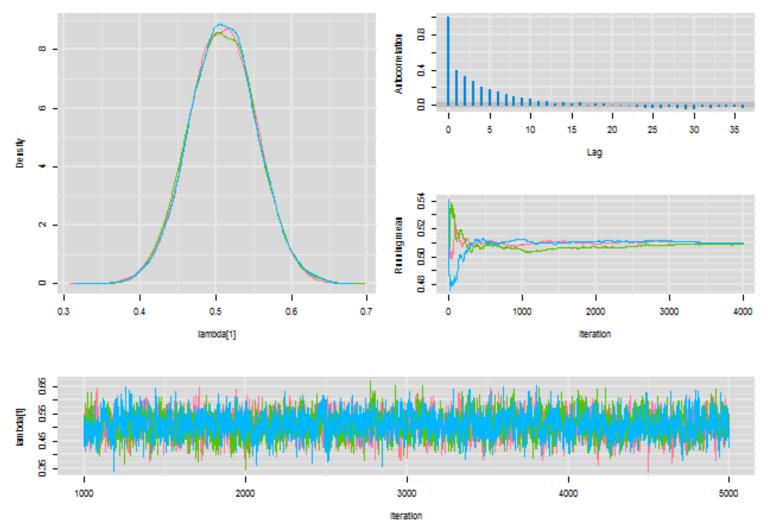
Diagnostics for pi[1,1]





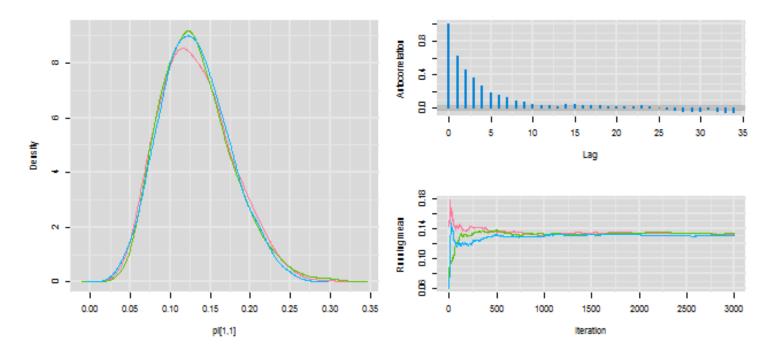
## Convergence Assessment (2)

Diagnostics for lambda[1]



# Posterior Summary (1)

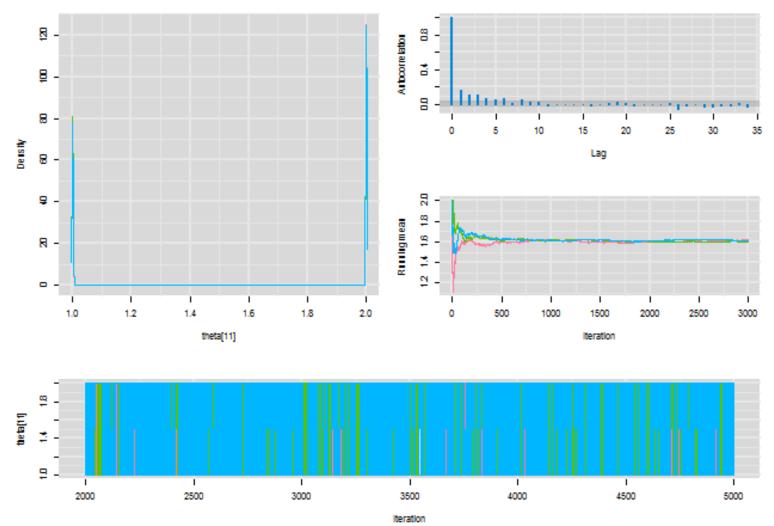
Diagnostics for pi[1,1]





# Posterior Summary (2)

Diagnostics for theta[11]



# Posterior Summary (3)

|           | Mean | SD   | Naive SE | Time-<br>series SE | 0.025 | 0.25 | 0.5  | 0.75 | 0.975 | Median | 95%<br>HPD<br>lower | 95% HPD<br>Upper |
|-----------|------|------|----------|--------------------|-------|------|------|------|-------|--------|---------------------|------------------|
| lambda[1] | 0.51 | 0.04 | 0        | 0                  | 0.42  | 0.48 | 0.51 | 0.54 | 0.6   | 0.51   | 0.43                | 0.6              |
| lambda[2] | 0.49 | 0.04 | 0        | 0                  | 0.4   | 0.46 | 0.49 | 0.52 | 0.58  | 0.49   | 0.4                 | 0.57             |
| pi[1,1]   | 0.13 | 0.04 | 0        | 0                  | 0.06  | 0.1  | 0.13 | 0.16 | 0.23  | 0.13   | 0.05                | 0.22             |
| pi[2,1]   | 0.84 | 0.04 | 0        | 0                  | 0.75  | 0.81 | 0.84 | 0.87 | 0.91  | 0.84   | 0.75                | 0.92             |
| pi[1,2]   | 0.22 | 0.05 | 0        | 0                  | 0.12  | 0.18 | 0.22 | 0.26 | 0.33  | 0.22   | 0.12                | 0.33             |
| pi[2,2]   | 0.98 | 0.02 | 0        | 0                  | 0.93  | 0.97 | 0.99 | 0.99 | 1     | 0.99   | 0.94                | 1                |
| pi[1,3]   | 0.02 | 0.01 | 0        | 0                  | 0     | 0.01 | 0.02 | 0.03 | 0.06  | 0.02   | 0                   | 0.05             |
| pi[2,3]   | 0.19 | 0.04 | 0        | 0                  | 0.12  | 0.17 | 0.19 | 0.22 | 0.28  | 0.19   | 0.12                | 0.27             |
| pi[1,4]   | 0.03 | 0.02 | 0        | 0                  | 0.01  | 0.02 | 0.03 | 0.04 | 0.07  | 0.03   | 0                   | 0.06             |
| pi[2,4]   | 0.23 | 0.05 | 0        | 0                  | 0.15  | 0.2  | 0.23 | 0.26 | 0.33  | 0.23   | 0.15                | 0.33             |
| pi[1,5]   | 0.15 | 0.04 | 0        | 0                  | 0.08  | 0.12 | 0.15 | 0.17 | 0.22  | 0.15   | 0.08                | 0.22             |
| pi[2,5]   | 0.64 | 0.05 | 0        | 0                  | 0.53  | 0.6  | 0.64 | 0.67 | 0.74  | 0.64   | 0.53                | 0.74             |
| pi[1,6]   | 0.17 | 0.04 | 0        | 0                  | 0.1   | 0.14 | 0.17 | 0.2  | 0.25  | 0.17   | 0.1                 | 0.25             |
| pi[2,6]   | 0.82 | 0.05 | 0        | 0                  | 0.72  | 0.79 | 0.82 | 0.86 | 0.92  | 0.82   | 0.73                | 0.92             |
| theta[1]  | 2    | 0.06 | 0        | 0                  | 2     | 2    | 2    | 2    | 2     | 2      | 2                   | 2                |
| theta[2]  | 1    | 0.02 | 0        | 0                  | 1     | 1    | 1    | 1    | 1     | 1      | 1                   | 1                |
| theta[3]  | 1    | 0.01 | 0        | 0                  | 1     | 1    | 1    | 1    | 1     | 1      | 1                   | 1                |
| theta[4]  | 1.97 | 0.17 | 0        | 0                  | 1     | 2    | 2    | 2    | 2     | 2      | 2                   | 2                |
| theta[5]  | 1.17 | 0.38 | 0        | 0.01               | 1     | 1    | 1    | 1    | 2     | 1      | 1                   | 2                |
| theta[6]  | 1    | 0.01 | 0        | 0                  | 1     | 1    | 1    | 1    | 1     | 1      | 1                   | 1                |
| theta[7]  | 1.01 | 0.07 | 0        | 0                  | 1     | 1    | 1    | 1    | 1     | 1      | 1                   | 1                |

#### Summary and Conclusion

#### Summary

- Dependence on initial values is "forgotten" after a sufficiently long run of the chain (memoryless)
- Convergence to a *distribution* 
  - Recommend monitoring multiple chains
  - PSRF as approximation
- Let the chain "burn-in"
  - Discard draws prior to convergence
  - Retain the remaining draws as draws from the posterior
- Dependence across draws induce autocorrelations
  - Can thin if desired
- Dependence across draws within and between parameters can slow mixing
  - Reparameterizing may help

Wise Words of Caution

# Beware: MCMC sampling can be dangerous!

-- Spiegelhalter, Thomas, Best, & Lunn (2007) (WinBUGS User Manual)